18,271 research outputs found

    Interpreting the evidence on life cycle skill formation

    Get PDF
    This paper presents economic models of child development that capture the essence of recent findings from the empirical literature on skill formation. The goal of this essay is to provide a theoretical framework for interpreting the evidence from a vast empirical literature, for guiding the next generation of empirical studies, and for formulating policy. Central to our analysis is the concept that childhood has more than one stage. We formalize the concepts of self-productivity and complementarity of human capital investments and use them to explain the evidence on skill formation. Together, they explain why skill begets skill through a multiplier process. Skill formation is a life cycle process. It starts in the womb and goes on throughout life. Families play a role in this process that is far more important than the role of schools. There are multiple skills and multiple abilities that are important for adult success. Abilities are both inherited and created, and the traditional debate about nature versus nurture is scientiÞcally obsolete. Human capital investment exhibits both self-productivity and complementarity. Skill attainment at one stage of the life cycle raises skill attainment at later stages of the life cycle (self-productivity). Early investment facilitates the productivity of later investment (complementarity). Early investments are not productive if they are not followed up by later investments (another aspect of complementarity). This complementarity explains why there is no equity-efficiency trade-off for early investment. The returns to investing early in the life cycle are high. Remediation of inadequate early investments is difficult and very costly as a consequence of both self-productivity and complementarity

    Effects of rotation in the energy spectrum of C60C_{60}

    Full text link
    In this paper, motivated by the experimental evidence of rapidly rotating C60C_{60} molecules in fullerite, we study the low-energy electronic states of rotating fullerene within a continuum model. In this model, the low-energy spectrum is obtained from an effective Dirac equation including non-Abelian gauge fields that simulate the pentagonal rings of the molecule. Rotation is incorporated into the model by solving the effective Dirac equation in the rotating referential frame. The exact analytical solution for the eigenfunctions and energy spectrum is obtained, yielding the previously known static results in the no rotation limit. Due to the coupling between rotation and total angular momentum, that appears naturally in the rotating frame, the zero modes of static C60C_{60} are shifted and also suffer a Zeeman splitting whithout the presence of a magnetic field

    Inertial-Hall effect: the influence of rotation on the Hall conductivity

    Get PDF
    Inertial effects play an important role in classical mechanics but have been largely overlooked in quantum mechanics. Nevertheless, the analogy between inertial forces on mass particles and electromagnetic forces on charged particles is not new. In this paper, we consider a rotating non-interacting planar two-dimensional electron gas with a perpendicular uniform magnetic field and investigate the effects of the rotation in the Hall conductiv

    Inspection and diagnosis tests for structural safety evaluation: A case study

    Get PDF
    Diagnosis and assessment of existing structures is a developing area due to the appearance of a high number of building defects, structural and non-structural deterioration and precocious loss of quality, and, consequently, lower expected durability. With the aim of verifying the viability of rehabilitation or the need to demolish an existing fifteen year old parking building, several inspections and diagnostic non-destructive and destructive testing, visual inspection, were carried out to evaluate the structural safety conditions

    A dynamical point of view of Quantum Information: entropy and pressure

    Full text link
    Quantum Information is a new area of research which has been growing rapidly since last decade. This topic is very close to potential applications to the so called Quantum Computer. In our point of view it makes sense to develop a more "dynamical point of view" of this theory. We want to consider the concepts of entropy and pressure for "stationary systems" acting on density matrices which generalize the usual ones in Ergodic Theory (in the sense of the Thermodynamic Formalism of R. Bowen, Y. Sinai and D. Ruelle). We consider the operator L\mathcal{L} acting on density matrices ρMN\rho\in \mathcal{M}_N over a finite NN-dimensional complex Hilbert space L(ρ):=i=1ktr(WiρWi)ViρVi,\mathcal{L}(\rho):=\sum_{i=1}^k tr(W_i\rho W_i^*)V_i\rho V_i^*, where WiW_i and ViV_i, i=1,2,...ki=1,2,...k are operators in this Hilbert space. L\mathcal{L} is not a linear operator. In some sense this operator is a version of an Iterated Function System (IFS). Namely, the Vi(.)Vi=:Fi(.)V_i\,(.)\,V_i^*=:F_i(.), i=1,2,...,ki=1,2,...,k, play the role of the inverse branches (acting on the configuration space of density matrices ρ\rho) and the WiW_i play the role of the weights one can consider on the IFS. We suppose that for all ρ\rho we have that i=1ktr(WiρWi)=1\sum_{i=1}^k tr(W_i\rho W_i^*)=1. A family W:={Wi}i=1,...,kW:=\{W_i\}_{i=1,..., k} determines a Quantum Iterated Function System (QIFS) FW\mathcal{F}_{W}, $\mathcal{F}_W=\{\mathcal{M}_N,F_i,W_i\}_{i=1,..., k}.

    Accessing the Acceleration of the Universe with Sunyaev-Zel'dovich and X-ray Data from Galaxy Clusters

    Full text link
    By using exclusively the Sunyaev-Zel'dovich effect and X-ray surface brightness data from 25 galaxy clusters in the redshift range 0.023< z < 0.784 we access cosmic acceleration employing a kinematic description. Such result is fully independent on the validity of any metric gravity theory, the possible matter-energy contents filling the Universe, as well as on the SNe Ia Hubble diagram.Comment: 3 pages, 4 figures, To appear in the Proceedings of the Twelfth Marcel Grossmann Meeting on General Relativit
    corecore